Abstract
A computationally efficient, easily implementable algorithm for MAP restoration of images degraded by blur and additive correlated Gaussian noise using Gibbs prior density functions is derived. This algorithm is valid for a variety of complete data spaces. The constraints upon the complete data space arising from the Gaussian image formation model are analyzed and a motivation is provided for the choice of the complete data, based upon the ease of computation of the resulting EM algorithms. The overlooked role of the null space of the blur operator in image restoration is introduced. An examination of this role reveals an important drawback to the use of the simulated annealing algorithm in maximizing a specific class of functionals. An alternative iterative method for computing the nullspace component of a vector is given. The ability of a simple Gibbs prior density function to enable partial recovery of the component of an image within the nullspace of the blur operator is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.