Abstract

Tsetse fly exhibit species-specific olfactory uniqueness potentially underpinned by differences in their chemosensory protein repertoire. We assessed 1) expansions of chemosensory protein orthologs in Glossina morsitans morsitans, Glossina pallidipes, Glossina austeni, Glossina palpalis gambiensis, Glossina fuscipes fuscipes and Glossina brevipalpis tsetse fly species using Café analysis (to identify species-specific expansions) and 2) differential expressions of the orthologs and associated proteins in male G. m. morsitans antennae and head tissues using RNA-Seq approaches (to establish associated functional molecular pathways). We established accelerated and significant (P<0.05, λ = 2.60452e-7) expansions of gene families in G. m. morsitans Odorant receptor (Or)71a, Or46a, Ir75a,d, Ionotropic receptor (Ir) 31a, Ir84a, Ir64a and Odorant binding protein (Obp) 83a-b), G. pallidipes Or67a,c, Or49a, Or92a, Or85b-c,f and Obp73a, G. f. fuscipes Ir21a, Gustatory receptor (Gr) 21a and Gr63a), G. p. gambiensis clumsy, Ir25a and Ir8a, and G. brevipalpis Ir68a and missing orthologs in each tsetse fly species. Most abundantly expressed transcripts in male G. m. morsitans included specific Or (Orco, Or56a, 65a-c, Or47b, Or67b, GMOY012254, GMOY009475, and GMOY006265), Gr (Gr21a, Gr63a, GMOY013297 and GMOY013298), Ir (Ir8a, Ir25a and Ir41a) and Obp (Obp19a, lush, Obp28a, Obp83a-b Obp44a, GMOY012275 and GMOY013254) orthologs. Most enriched biological processes in the head were associated with vision, muscle activity and neuropeptide regulations, amino acid/nucleotide metabolism and circulatory system processes. Antennal enrichments (>90% of chemosensory transcripts) included cilium-associated mechanoreceptors, chemo-sensation, neuronal controlled growth/differentiation and regeneration/responses to stress. The expanded and tsetse fly species specific orthologs includes those associated with known tsetse fly responsive ligands (4-methyl phenol, 4-propyl phenol, acetic acid, butanol and carbon dioxide) and potential tsetse fly species-specific responsive ligands (2-oxopentanoic acid, phenylacetaldehyde, hydroxycinnamic acid, 2-heptanone, caffeine, geosmin, DEET and (cVA) pheromone). Some of the orthologs can potentially modulate several tsetse fly species-specific behavioral (male-male courtship, hunger/host seeking, cool avoidance, hygrosensory and feeding) phenotypes. The putative tsetse fly specific chemosensory gene orthologs and their respective ligands provide candidate gene targets and kairomones for respective downstream functional genomic and field evaluations that can effectively expand toolbox of species-specific tsetse fly attractants, repellents and other tsetse fly behavioral modulators.

Highlights

  • Human African Trypanosomiasis (HAT) constitutes one of the most neglected tropical diseases (NTDs) with devastating health and economic consequences in sub-Sahara Africa [1,2]

  • The Morsitans group consists of five species that include Glossina morsitans morsitans and Glossina pallidipes restricted to savannah grassland and Glossina austeni occupying coastal woodlands [8]

  • We considered transcripts validly differentially expressed if they had at least two-fold changes, p-value corrected False Detection Rate (FDR) < 0.05 and one Counts Per Million (CPM) coverage to mitigate against type I statistical errors

Read more

Summary

Introduction

Human African Trypanosomiasis (HAT) constitutes one of the most neglected tropical diseases (NTDs) with devastating health and economic consequences in sub-Sahara Africa [1,2]. The Morsitans group consists of five species that include Glossina morsitans morsitans and Glossina pallidipes restricted to savannah grassland and Glossina austeni occupying coastal woodlands [8] This group is adapted to drier habitats than Palpalis and Fusca [9] and preferentially feeds on livestock and wildlife. They are important vectors of African Animal Trypanosomiasis (AAT) known as nagana. Palpalis group consists of five species, including Glossina palpalis gambiensis and Glossina fuscipes fuscipes in West, Central and East Africa These species are predominant vectors of Human African Trypanosomosis (HAT), known as sleeping sickness, despite their preferential predilection to feeding on reptiles and ungulates. Glossina brevipalpis is of limited medical and agricultural significance and occurs discontinuously in other parts of sub-Saharan Africa [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call