Abstract

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap with SARS-CoV.ResultsIn this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport), and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation) showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV. PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19 patients.ConclusionsBased on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.

Highlights

  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and after was spread in all continentals

  • Gene Ontology (GO) Analysis In this analysis, the top ten gene ontology (GO) as a network were visualized that their gene products were attributed to some vital cellular functions of the infected 2B4 cell line with SARS-CoV

  • The p-value based on False Discovery Rate (FDR) < 0.05 as the significance cut-offs was applied in the GO analysis and Reactome pathway enrichment pathways in the evaluation of transcriptomic gene expression profiles by microarray assay in SARS-CoV infection, which has a potential to be expanded to CIVID-19

Read more

Summary

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and after was spread in all continentals. The transcriptome of living organisms including RNA transcripts is studied by transcriptomics assays [1]. The outputs of RNA-Seq analysis can be validated by quantitative reverse transcription PCR (RTqPCR) as a complementary method in transcriptomics [4]. Two models, including cell lines for in vitro and animal models for in vivo assays are commonly considered for transcriptomics analysis of human responses to infectious agents [7]. In vitro and in vivo cell lines/animals interactions with pathogens and their host-specific responses to the pathogens can be evaluated by transcriptomics techniques. The interactions of the infected cell lines with immune system cellular components can be through recognition with specific T cells and natural killer (NK) cells as the crucial factors of the adaptive and innate immunity and reflected in the transcriptional responses [8,9,10]. The patterns of gene expression as a biomarker can be evaluated by transcriptomics techniques to discriminate the different stages of the infections and may influence physiological pathways

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.