Abstract

Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, y)Σk=1∞|x k − y k |2−k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 − x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2 n r − j), j = 0,1,…, 2 n − 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.

Highlights

  • – метрика на Ω = AN, и μ – мера Бернулли на Ω с вероятностями p0, p1 > 0, p0 + p1 = 1

  • On Some Curves Defined by Functional Equations

  • Surfaces Consisting of Parts

Read more

Summary

Мера шара в пространстве последовательностей

Через μ обозначим меру Бернулли на Ω с вероятностями p0, p1 > 0, p0 + p1 = 1. Через B(ω, r) обозначим открытый шар радиуса r с центром в точке ω. Что функция μ(ω, x) = μ(B(ω, x)) удовлетворяет рекуррентному уравнению μ(aω, x) =. Где a ∈ {0, 1} и через aω обозначается точка a, ω1, ω2,. Что функция μ(ω, x), заданная в (4), удовлетворяет уравнению μ(aω, x/2) = paμ(ω, x). Поскольку при j < 2n−1 sn(0ω, j) = sn−1(ω, j) + 1, sn(1ω, j) = sn−1(ω, j), имеем ps0n(aω,j)pn1 −sn(aω,j). Поскольку при 2n−1 ≤ j < 2n sn(0ω, j) = sn−1(ω, j − 2n−1), sn(1ω, j) = sn−1(ω, j − 2n−1) + 1, имеем p p p . Доказанные равенства (6), (7) эквивалентны определению (3) функции μ(ω, x)

Кривые де Рама с двумя линейными сжатиями
Функция Лебега
Кривые Чезаро–Леви
Кривые Коха–Пеано
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call