Abstract

The Preisach model of hysteresis has two parts: a geometrical staircase and a density or weighting function. In typical applications, the underlying density function of hysteresis operators is estimated through partial derivatives of first order reversal curves, or a priori assumed to obey simple functional forms like Gaussian, Lorenzian etc. Here we take a more agnostic and empirical approach, and expand the density in a general form using the spectrum of the Laplace operator on a bounded triangular domain. Transforming the input to the same bounded domain, we have a nonlinear parameter fitting problem. We fit parameters to our own magnetic hysteresis data directly using complex waveforms, for both soft and hard loops. For hard loops, if the Preisach density is to be kept strictly nonnegative (as is usual), a nonlinear transformation of the Preisach output is needed. Additionally, the Preisach density is consists of a single hump for soft loops and three distinct humps for hard loops. Our fitted density function, based on a general expansion, contains several coefficients, but subsequent simulation is quick. The main contribution of this paper is a direct demonstration of fitting the density function without making a priori assumptions about the functional form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.