Abstract
AbstractWe prove convergence results for expanding curvature flows in the Euclidean and hyperbolic space. The flow speeds have the form , where and F is a positive, strictly monotone and 1‐homogeneous curvature function. In particular this class includes the mean curvature . We prove that a certain initial pinching condition is preserved and the properly rescaled hypersurfaces converge smoothly to the unit sphere. We show that an example due to Andrews–McCoy–Zheng can be used to construct strictly convex initial hypersurfaces, for which the inverse mean curvature flow to the power loses convexity, justifying the necessity to impose a certain pinching condition on the initial hypersurface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.