Abstract
Here, we demonstrate a significant ex vivo expansion of human hematopoietic stem cells capable of repopulating in NOD/SCID mice. Using a combination of stem cell factor (SCF), Flk2/Flt3 ligand (FL), thrombopoietin (TPO), and a complex of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), we cultured cord blood CD34(+) cells for 7 days and transplanted these cells into NOD/SCID mice. Bone marrow engraftment was judged successful when recipient animals contained measurable numbers of human CD45(+) cells 10-12 weeks after transplantation. When cells were cultured with SCF+FL+TPO+IL-6/sIL-6R, 13 of 16 recipients were successfully engrafted, and CD45(+) cells represented 11.5% of bone marrow cells in engrafted recipients. Cells cultured with a subset of these factors were less efficiently engrafted, both as measured by frequency of successful transplantations and prevalence of CD45(+) cells. In animals receiving cells cultured with all 4 factors, human CD45(+) cells represented various lineages, including a large number of CD34(+) cells. The proportion of CD45(+) cells in recipient marrow was 10 times higher in animals receiving these cultured cells than in those receiving comparable numbers of fresh CD34(+) cells, and the expansion rate was estimated at 4.2-fold by a limiting dilution method. Addition of IL-3 to the cytokine combination abrogated the repopulating ability of the expanded cells. The present study may provide a novel culture method for the expansion of human transplantable hematopoietic stem cells suitable for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.