Abstract
<p>We study how hot plasma that is released during a solar flare can be confined in its source and interact with surrounding colder plasma. The X-ray emission of coronal flare sources is well explained using Kappa velocity distribution. Therefore, we compare the difference in the confinement of plasma with Kappa and Maxwellian distribution. We use a 3D Particle-in-Cell code, which is large along magnetic field lines, effectively one-dimensional, but contains all electromagnetic effects. In the case with Kappa distribution, contrary to Maxwellian distribution, we found formation of several thermal fronts associated with double-layers that suppress particle fluxes. As the Kappa distribution of electrons forms an extended tail, more electrons are not confined by the first front and cause formation of multiple fronts. A beam of electrons from the hot part is formed at each front; it generates return current, Langmuir wave density depressions, and a double layer with a higher potential step than in the Maxwellian case. We compare the Kappa and Maxwellian cases and discuss how these processes could be observed.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.