Abstract
The primary humoral response produces antigen-specific antibodies so to clear the initial infection, and generates a population of corresponding memory cells to prevent infection by future encounters with the same pathogen. The continuous genetic modification of a pathogen's exterior, however, is one mechanism used to evade the immune defenses of its host. Here we describe a novel means, involving anti-idiotypic antibodies, by which the host can counteract such pathogen genetic alterations by modulation of its primary humoral response. An autoimmune response against primary antibodies, Ab1's, creates anti-idiotypic antibodies (Ab2's), some of which (designated Ab2α) are able to bind the Ab1/antigen complex. We have discovered that binding of Ab2α to its corresponding Ab1 can expand Ab1's ability to bind variations of its antigen. This expanded epitope cross-reactivity is shown not only to increase the binding activity of Ab1 but also its ability to neutralize a variant infectious virus. MAb M77 is an Ab1, which is highly strain-specific for the HIV-1 envelope protein gp120 IIIB. This Ab1 can be rendered cross-reactive and neutralizing for an otherwise resistant HIV strain by its interaction with a unique anti-idiotypic Ab2α (GV12). Furthermore, molecular characterization of this expanded cross-reactivity was accomplished using combinatorial phage display peptide libraries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.