Abstract

Susceptibility-weighted imaging (SWI) microscopy on a 7.0T system demonstrated the corticomedullary junction (CMJ) to be a high-susceptibility region (HSR) in young normal subjects, suggesting that functional alteration of cortical microcirculation could be assessed with this imaging method. Focused microscopic studies were performed on the parietal association cortex in 74 normal volunteers (ages 20-79 years; 35 female, 39 male) using a SWI algorithm on a system constructed based on General Electric Signa LX (Waukesha, WI, USA), equipped with a 900-mm clear bore superconducting magnet operating at 7.0T. There was a clear-cut reduction in the thickness of the normal-appearing cortex (cortex, R2 = .5290, P < .001) and expansion of CMJ-HSR (R(2) = .6919, P < .001). The sum of cortex thickness and CMJ-HSR thickness was essentially constant, suggesting that the observed expansion of CMR-HSR with aging likely occurred within the cortical mantle. CMJ-HSR expands significantly as a function of aging. Since CMJ-HSR represents a functionally distinct area with relatively slow venous flow, the observed expansion is believed to reflect alteration in cerebral microcirculation with increased age, providing another clue for pathogenesis of Alzheimer's disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call