Abstract

A monolayer of superfluid Fermi gas can be prepared within an optical dipole trap using the tight confinement along the chosen direction. In this case, Cooper pairs occupy the lowest state corresponding to the motion in the trapping potential. After switching off the trapping potential, the initially two-dimensional gas expands to the three-dimensional space. In the case of unitary s-wave interactions, the dynamics of Fermi gas expansion is treated in the framework of appropriately modified Gross–Pitaevskii equation. It is found that the superfluid gas expands significantly faster than the normal gas, in contrast to the situation characteristic of the initially three-dimensional gas. The available experimental data [P. Dyke et al., Phys. Rev. A 93, 011603 (2016)] are close to the predictions of the model under study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.