Abstract

We consider spherically symmetric distributions of anisotropic fluids with a central vacuum cavity, evolving under the condition of vanishing expansion scalar. Some analytical solutions are found satisfying Darmois junction conditions on both delimiting boundary surfaces, while some others require the presence of thin shells on either (or both) boundary surfaces. The solutions here obtained model the evolution of the vacuum cavity and the surrounding fluid distribution, emerging after a central explosion, thereby showing the potential of expansion–free condition for the study of that kind of problems. This study complements a previously published work where modeling of the evolution of such kind of systems was achieved through a different kinematical condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.