Abstract

Inspired by recent bacterial chromosome experiments in narrow channels, we simulate the expansion (and internal) dynamics of a self-avoiding polymer under cylindrical confinement. The chain is trapped in a piston, compressed up to of its equilibrium length, and released unidirectionally from the right end of the piston. Our results suggest that the chain initially expands like a concentrated hard-sphere system, enters a subdiffusive regime at an intermediate time, and eventually relaxes globally to its equilibrium size. Using our results, we test a few theoretical models (e.g., a Flory-type approach), in which the blob-blob or monomer-monomer interaction determines “expansion forces,” clarifying their applicability. Our results can be used for exploring further the polymer aspect of bacterial chromosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.