Abstract
The main important factor that plays vital role in success the deep learning is the deep training by many and many images, if neural networks are getting bigger and bigger but the training datasets are not, then it sounds like going to hit an accuracy wall. Briefly, this paper investigates the current state of the art of approaches used for a data augmentation for expansion the corona virus disease 2019 (COVID-19) chest X-ray images using different data augmentation methods (transformation and enhancement) the dataset expansion helps to rise numbers of images from 138 to 5520, the increasing rate is 3,900%, this proposed model can be used to expand any type of image dataset, in addition, the dataset have used with convolutional neural network (CNN) model to make classification if detected infection with COVID-19 in X-ray, the results have gotten high training accuracy=99%
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.