Abstract

Using a chirally symmetric Lagrangian, which contains quarks as elementary degrees of freedom and mesons as bound states, we investigate the expansion and hadronization of a fireball, which initially contains only quarks and produces mesons by collisions. For this model, we study the time scales of expansion and thermal and chemical equilibration. We find that the expansion progresses relatively fast, leaving not necessarily enough time to establish thermal and chemical equilibrium. Mesons are produced in the bulk of the fireball rather than at a surface, at a temperature below the Mott temperature. Initial density fluctuations become amplified during the expansion. These observations challenge the applicability of hydrodynamical approaches to the expansion of a quark-gluon plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call