Abstract

A multi-scale micromechanics model is proposed to describe the expansion and deterioration of concrete due to Alkali-Silica Reaction (ASR). The mechanics of ASR induced deterioration of a Representative Elementary Volume (REV) of concrete is modeled through a synthesis of distributed microcracking and mean-field homogenization. At the microscale, ASR-gel-pressure induced microcrack growth in and around the reactive aggregates is modeled using the framework of linear elastic fracture mechanics. Mean-field homogenization across multiple scales is used to obtain the overall expansion and degradation of the material. By specifying the spatial distribution of the pressurizing gel, two different ASR mechanisms associated with “slowly” and “rapidly” reactive aggregates can be modeled. Experimental data for concrete degradation as a function of the macroscopic expansion is found to lie within the theoretical upper and lower bounds that characterize the distribution of the gel in the aggregate or the cement paste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.