Abstract
Escherichia coli Nissle 1917 (EcN) is a probiotic microbe that has the potential to be developed as a promising chassis for synthetic biology applications. However, the molecular tools and techniques for utilizing EcN remain to be further explored. To address this opportunity, the EcN-based toolbox was systematically expanded, enabling EcN as a powerful platform for more applications. First, two EcN cryptic plasmids and other compatible plasmids were genetically engineered to enrich the manipulable plasmid toolbox for multiple gene coexpression. Next, two EcN-based technologies were developed, including the conjugation strategy for DNA transfer, and quantification of protein expression capability. Finally, the EcN-based applications were further expanded by developing EcN native integrase-mediated genetic engineering and establishing an in vitro cell-free protein synthesis (CFPS) system. Overall, this study expanded the toolbox for manipulating and making full use of EcN as a commonly used probiotic chassis, providing several simplified, dependable, and predictable strategies for researchers working in synthetic biology fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.