Abstract
The DNA topoisomerase II (topo II) enzyme plays an important role in the replication, recombination, and repair of DNA. Despite their widespread applications in cancer therapy, new, selective, and potent topo II inhibitors with better pharmaceutical profiles are needed to handle drug resistance and severe adverse effects. In this respect, an array of 36 new anticancer compounds was designed based on a Xanthone core tethered to multifunctional Pyridine-amines and Imidazole scaffold via alkyl chain linkers. An integrated in silico approach was used to understand the structural basis and mechanism of inhibition of the hybrid xanthone derivatives. In this study, we established an initial virtual screening workflow based on pharmacophore mapping, docking, and cancer target association to validate the target selection process. Next, a simulation-based docking was conducted along with pharmacokinetic analysis to filter out the five best compounds (7, 10, 25, 27, and 30) having binding energies within the range of −60.45 to −40.97 kcal/mol. The screened compounds were further subjected to molecular dynamics simulation for 200 ns followed by MM-GBSA and ligand properties analysis to assess the stability and binding affinity to hTOP2α. The top-ranking hits 3,7-bis(3-(2-aminopyridin-3-ylhydroxy)propoxy)-1-hydroxy-9H-xanthen-9-one (ligand 7) and 3,8-bis(3-(2-aminopyridin-3-ylhydroxy)propoxy)-1-hydroxy-9H-xanthen-9-one (ligand 25) were found to have no toxicity, optimum pharmacokinetic and, DFT properties and stable intermolecular interactions with the active site of hTopo IIα protein. In conclusion, further in vitro and in vivo experimental validation of the identified lead molecules is warranted for the discovery of new human Topoisomerase 2 alpha inhibitors. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.