Abstract

Developing materials that can more efficiently and cheaply capture carbon dioxide from ambient atmospheric conditions is essential for improving negative emission technologies. This study builds on the promising moisture-swing modality for direct air capture of carbon dioxide by investigating the use of several new anions─orthosilicate, borate, pyrophosphate, tripolyphosphate, and dibasic phosphate─that when introduced into ion-exchange resins allow for the cyclable capture of CO2 under dry conditions and its release under wet conditions. These ions, as well as many others that failed to show moisture-swing performance, are tested and directly compared thermodynamically and kinetically to understand their differences. This includes the use of analytical approaches new to the carbon capture field, such as the correlation of adsorption isotherms to moisture-swing performance, the use of phase lag kinetics, the examination of the humidity-carbon capture hysteresis of the sorbents, and the precise quantification of ion loading using inductively coupled plasma-optical emission spectroscopy. Phosphate dibasic was found to have the largest mass-normalized CO2 moisture-swing capacity, whereas phosphate tribasic had the best performance when factoring in kinetics, and pyrophosphate had the highest swing capacity when normalizing on a per-ion or per-unit-charge basis. This work not only sheds light on ways to improve DAC but also provides insights pertinent to the advancement of gas separation, negative emission technologies, and sorbent materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.