Abstract

A mononuclear ruthenium(II) polypyridyl complex with an enlarged terpyridyl coordination cage was synthesized by the formal introduction of a carbon bridge between the coordinating pyridine rings. Structurally, the ruthenium(II) complex shows an almost perfect octahedral N6 coordination around the central Ru(II) metal ion. The investigation of the photophysical properties reveals a triplet metal-to-ligand charge transfer emission with an unprecedented quantum yield of 13% and a lifetime of 1.36 mus at room temperature and in the presence of air oxygen. An exceptional small energy gap between light absorption and light emission, or Stokes shift, was detected. Additionally, time-dependent density functional theory calculations were carried out in order to characterize the ground state and both the singlet and triplet excited states. The exceptional properties of the new compound open the perspective of exploiting terpyridyl-like ruthenium complexes in photochemical devices under ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.