Abstract
AbstractThe synthesis of a new family of single‐ion conducting random copolymers bearing polyhedral boron anions is reported. For this purpose two novel ionic monomers, namely [B12H11(OCH2CH2)2OC(O)C(CH3)CH2]2−[(C4H9)4N+]2 and [8‐(OCH2CH2)2OC(O)C(CH3)CH2‐3,3′‐Co(1,2‐C2B9H10)(1′,2′‐C2B9H11)]−K+, having methacrylate function, diethylene glycol bridge and closo‐dodecaborate or cobalt bis(1,2‐dicarbollide) anions were designed. Such monomers differ from previously reported ones by (i) chemically attached highly delocalized boron anions, by (ii) valency of the anion (divalent anion and monovalent one) and by (iii) the presence of oxyethylene flexible spacer between the methacrylate group and bonded anion. Their free radical copolymerization with poly(ethylene glycol) methyl ether methacrylate and subsequent ion exchange provided lithium‐ion conducting polyelectrolytes showing low glass transition temperature (−53 to −49 °C), ionic conductivity up to 9.1 × 10−7 S cm−1, lithium transference number up to 0.61 (70 °C) and electrochemical stability up to 4.1 V versus Li+/Li (70 °C). The incorporation of propylene carbonate (20–40 wt%) into the copolymers resulted in the enhancement of their ionic conductivity by one order of magnitude and significantly increased their electrochemical stability up to 4.7 V versus Li+/Li (70 °C). © 2019 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.