Abstract

The recent development of reliable GC/qMS methods for δ37 Cl compound-specific stable isotope analysis (CSIA) paves the way for dual carbon-chlorine isotope analysis of chlorinated ethenes and thus allows deeper insights into underlying transformation processes/mechanisms. A two-point calibration is indispensable for the precise and correct conversion of raw data to the international δ37 ClSMOC scale. The currently available calibration standards for tetrachloroethylene (PCE) span only a very narrow range from -2.52‰ (EIL2) to +0.29‰ (EIL1), which is considerably smaller than observed δ37 Cl isotope enrichment in (bio-)transformation studies (up to 12‰). We describe the preparation and evaluation of a new 37 Cl-enriched PCE standard to avoid bias in δ37 Cl CSIA arising from extrapolation beyond the calibration range. The preparation comprised: (i) partial PCE reduction by zero-valent zinc in a system of PCE, ethanol (initial volume ratio 3/5) and trace amounts of water followed by (ii) liquid-liquid extraction and (iii) a subsequent fractional distillation to purify the 37 Cl-enriched PCE. The obtained PCE (PCEenriched ) showed a purity of 98.8% (mole fraction) and a δ37 ClSMOC value of +10.8±0.5‰. The evaluation of an experimental dataset with and without extrapolation showed no significant variation. The new PCE standard (PCEenriched ) expands the calibration range to 13.3‰ (previously 2.8‰) and thus prevents potential bias introduced by extrapolation beyond the calibration range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call