Abstract

With the aim to enlarge the set of available flavoprotein monooxygenases, we have cloned 8 unexplored genes from Rhodococcus jostii RHA1 that were predicted to encode class B flavoprotein monooxygenases. Each monooxygenase can be expressed as soluble protein and has been tested for conversion of sulfides and ketones. Not only enantioselective sulfoxidations, but also enantioselective Baeyer–Villiger oxidations could be performed with this set of monooxygenases. Interestingly, in contrast to known class B flavoprotein monooxygenases, all studied biocatalysts showed no nicotinamide coenzyme preference. This feature coincides with the fact that the respective sequences appear to form a discrete group of sequence related proteins, distinct from the known class B flavoprotein monooxygenases subclasses: the so-called flavin-containing monooxygenases (FMOs), N-hydroxylating monooxygenases (NMOs) and Type I Baeyer–Villiger monooxygenases (BVMOs). Taken together, these data reveal the existence of a new subclass of class B flavoprotein monooxygenases, which we coined as Type II FMOs, that can perform Baeyer–Villiger oxidations and accept both NADPH and NADH as coenzyme. The uncovered biocatalytic properties of the studied Type II FMOs make this newly recognized subclass of monooxygenases of potential interest for biocatalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.