Abstract

A better understanding of the clinical characteristics of coronavirus disease 2019 (COVID-19) is urgently required to address this health crisis. Numerous researchers and pharmaceutical companies are working on developing vaccines and treatments; however, a clear solution has yet to be found. The current study proposes the use of artificial intelligence methods to comprehend biomedical knowledge and infer the characteristics of COVID-19. A biomedical knowledge base was established via FastText, a word embedding technique, using PubMed literature from the past decade. Subsequently, a new knowledge base was created using recently published COVID-19 articles. Using this newly constructed knowledge base from the word embedding model, a list of anti-infective drugs and proteins of either human or coronavirus origin were inferred to be related, because they are located close to COVID-19 on the knowledge base. This study attempted to form a method to quickly infer related information about COVID-19 using the existing knowledge base, before sufficient knowledge about COVID-19 is accumulated. With COVID-19 not completely overcome, machine learning-based research in the PubMed literature will provide a broad guideline for researchers and pharmaceutical companies working on treatments for COVID-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.