Abstract
To develop new selection criteria for active surveillance (AS) in intermediate-risk (IR) prostate cancer (PCa) patients. Retrospective study including patients from 14 referral centers who underwent pre-biopsy mpMRI, image-guided biopsies and radical prostatectomy. The cohort included biopsy-naive IR PCa patients who met the following inclusion criteria: Gleason Grade Group (GGG) 1-2, PSA < 20ng/mL, and cT1-cT2 tumors. We relied on a recursive machine learning partitioning algorithm developed to predict adverse pathological features (i.e., ≥ pT3a and/or pN + and/or GGG ≥ 3). A total of 594 patients with IR PCa were included, of whom 220 (37%) had adverse features. PI-RADS score (weight:0.726), PSA density (weight:0.158), and clinical T stage (weight:0.116) were selected as the most informative risk factors to classify patients according to their risk of adverse features, leading to the creation of five risk clusters. The adverse feature rates for cluster #1 (PI-RADS ≤ 3 and PSA density < 0.15), cluster #2 (PI-RADS 4 and PSA density < 0.15), cluster #3 (PI-RADS 1-4 and PSA density ≥ 0.15), cluster #4 (normal DRE and PI-RADS 5), and cluster #5 (abnormal DRE and PI-RADS 5) were 11.8, 27.9, 37.3, 42.7, and 65.1%, respectively. Compared with the current inclusion criteria, extending the AS criteria to clusters #1 + #2 or #1 + #2 + #3 would increase the number of eligible patients (+ 60 and + 253%, respectively) without increasing the risk of adverse pathological features. The newly developed model has the potential to expand the number of patients eligible for AS without compromising oncologic outcomes. Prospective validation is warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.