Abstract

Single-frequency fiber lasers at S-, C-, and L-bands play a crucial role in various applications such as optical network expansion, high-precision metrology, coherent lidar, and atomic physics. However, compared to the C-band, the S- and L-bands have wavelength deviations and suffer from excited-state absorption, which limits the output performance. To address this issue, a strategy called ion hybridization has been proposed to increase the differences in site locations of rare earth (RE) ions in the laser matrix, thereby achieving a broader gain bandwidth. This strategy has been applied to an Er3+/Yb3+ co-doped modified phosphate fiber (EYMPF), resulting in gain coefficients per unit length greater than 2 dB/cm at S-, C-, and L-bands. To demonstrate its capabilities, several centimeter-long EYMPFs have been used to generate single-frequency laser outputs at S-, C- and L-bands with kHz-linewidths, high signal-to-noise ratios (>70 dB), and low relative intensity noise (<-130 dB/Hz) in a compact short linear-cavity configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.