Abstract

Holographic display is considered as the most promising three-dimensional (3D) display due to its unique feature of reconstructing arbitrary wavefronts. However, the limited étendue, which hinders the immersive experience of observers, remains a major unresolved issue in holographic display technique. In this paper, we propose a novel approach to tweak the constraints of étendue by expanding the energy envelope in holographic display via mutually coherent multi-illumination. The proposed concept contains both a light source design for generating a mutually coherent multi-directional wave and a computer-generated hologram optimization framework for providing high-resolution 3D holograms. To verify the proposed approach, a benchtop prototype of a holographic near-eye display providing an intrinsic large exit-pupil is implemented. The experimental results clearly show that the exit-pupil is effectively expanded by four times and an appropriate viewpoint image is reconstructed according to the view position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call