Abstract
Based on the Koch network constructed using Koch fractals, we proposed a class of expanded Koch networks in this paper. The original triangle is replaced by r-polygon, and each node generates m sub r-polygons by every step, which makes the Koch network more general. We studied the structure and properties of the networks. The exact analytical result of the degree distribution, clustering coefficient and average path length were obtained. When parameters m and r satisfy some certain conditions, the networks follow a power-law distribution and have a small average path length. Finally, we introduced the random walk on the network. Our discussions focused on the trapping problem, particularly the calculation and derivation of mean first passage time (MFPT) and global mean first passage time (GMFPT). In addition, we also gave the relationship between the above results and the network size.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.