Abstract

Expanded helicenes are large, structurally flexible π-frameworks that can be viewed as building blocks for more complex chiral nanocarbons. Here we report a gram-scale synthesis of an alkyne-functionalized expanded [11]helicene and its single-step transformation into two structurally and functionally distinct types of macrocyclic derivatives: (1) a figure-eight dimer via alkyne metathesis (also gram scale) and (2) two arylene-bridged expanded helicenes via Zr-mediated, formal [2+2+n] cycloadditions. The phenylene-bridged helicene displays a substantially higher enantiomerization barrier (22.1 kcal/mol) than its helicene precursor (<11.9 kcal/mol), which makes this a promising strategy to access configurationally stable expanded helicenes. In contrast, the topologically distinct figure-eight retains the configurational lability of the helicene precursor. Despite its lability in solution, this compound forms homochiral single crystals. Here, the configuration is stabilized by an intricate network of two distinct yet interconnected helical superstructures. The enantiomerization mechanisms for all new compounds were probed using density functional theory, providing insight into the flexibility of the figure-eight and guidance for future synthetic modifications in pursuit of non-racemic macrocycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.