Abstract
Observed kinematical data of 40 Local Group (LG) members are used to derive the dark matter halo mass of such galaxies. Haloes are selected from the theoretically expected LG mass function and two different density profiles are assumed, a standard universal cuspy model and a mass dependent profile which accounts for the effects of baryons in modifying the dark matter distribution within galaxies. The resulting relations between stellar and halo mass are compared with expectations from abundance matching. Using a universal cuspy profile, the ensemble of LG galaxies is fit in relatively low mass haloes, leaving "dark" many massive haloes of \mhalo$\gtrsim$10$^{10}$\msun: this reflects the "too big to fail" problem and results in a \mstar-\mhalo\ relation that differs from abundance matching predictions. Moreover, the star formation efficiency of isolated LG galaxies increases with decreasing halo mass when adopting a cuspy model. By contrast, using the mass dependent density profile, dwarf galaxies with \mstar$\gtrsim$10$^{6}$\msun are assigned to more massive haloes, which have a central cored distribution of dark matter: the "too big to fail" problem is alleviated, the resultant \mstar-\mhalo\ relation follows abundance matching predictions down to the completeness limit of current surveys, and the star formation efficiency of isolated members decreases with decreasing halo mass, in agreement with theoretical expectations. Finally, the cusp/core space of LG galaxies is presented, providing a framework to understand the non-universality of their density profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.