Abstract
Background: Vascular calcification is a common phenomenon in patients with chronic kidney disease and strongly associated with increased cardiovascular mortality. Vascular calcification is an active process mediated in part by inflammatory processes in vascular smooth muscle cells (VSMC). These could be modified by the insufficient removal of proinflammatory cytokines through conventional high-flux (HF) membranes. Recent trials demonstrated a reduction of inflammation in VSMC by use of dialysis membranes with a higher and steeper cut-off. These membranes caused significant albumin loss. Therefore, the effect of high retention Onset (HRO) dialysis membranes on vascular calcification and its implications in vitro was evaluated. Methods: In the PERCI II trial, 48 chronic dialysis patients were dialyzed using HF and HRO dialyzers and serum samples were collected. Calcifying VSMC were incubated with the serum samples. Calcification was determined using alizarin red staining (AZR) and determination of alkaline phosphatase (ALP) activity. Furthermore, apoptosis was evaluated, and release of matrix Gla protein (MGP), osteopontin (OPN) and growth differentiation factor 15 (GDF-15) were measured in cell supernatants. Results: Vascular calcification in vitro was significantly reduced by 24% (ALP) and 36% (AZR) after 4 weeks of HRO dialysis and by 33% (ALP) and 48% (AZR) after 12 weeks of dialysis using HRO membranes compared to HF dialysis. Apoptosis was significantly lower in the HRO group. The concentrations of MGP and OPN were significantly elevated after incubation with HF serum compared to HRO serum and healthy controls. Similarly, GDF-15 release in the supernatant was elevated after incubation with HF serum, an effect significantly ameliorated after treatment with HRO medium. Conclusions: Expanded haemodialysis therapy reduces the pro-calcific potential of serum from dialysis patients in vitro. With a markedly reduced albumin filtration compared to high cut-off dialysis, use of the HRO dialyzers may possibly provide a treatment option for chronic dialysis patients to reduce the progression of vascular calcification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.