Abstract

AbstractSilica impregnated expanded graphite–epoxy composites are developed as bipolar plates for proton exchange membrane (PEM) fuel cells. These composite plates were prepared by solution impregnation, followed by compression molding and curing. Mechanical properties, electrical conductivities, corrosion resistance, and contact angles were determined as a function of impregnated content. The plates show high flexural strength with 5% methyltrimethoxysilane (MTMS) addition (20 MPa) and in‐plane conductivity of 131 S cm−1 that meet the DOE target (>100 S cm−1). Corrosion current values as low as 1.09 μA cm−2 were obtained. The contact angle was found to be 80°. Power density of 1 W cm−2 was achieved with custom made expanded graphite–polymer composite plates. High efficiency values were obtained at low current regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.