Abstract

Endothelial progenitor cells (EPCs) improve survival and reduce organ failure in cecal ligation and puncture-induced sepsis; however, expanded EPCs may represent an even better approach for vascular repair. To date, no study has compared the effects of non-expanded EPCs (EPC-NEXP) with those of expanded EPCs (EPC-EXP) and mesenchymal stromal cells of human (MSC-HUMAN) and mouse (MSC-MICE) origin in experimental sepsis. One day after cecal ligation and puncture sepsis induction, BALB/c mice were randomized to receive saline, EPC-EXP, EPC-NEXP, MSC-HUMAN or MSC-MICE (1 × 105) intravenously. EPC-EXP, EPC-NEXP, MSC-HUMAN, and MSC-MICE displayed differences in phenotypic characterization. On days 1 and 3, cecal ligation and puncture mice showed decreased survival rate, and increased elastance, diffuse alveolar damage, and levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α, vascular endothelial growth factor, and platelet-derived growth factor in lung tissue. EPC-EXP and MSC-HUMAN had reduced elastance, diffuse alveolar damage, and platelet-derived growth factor compared to no-cell treatment. Tumor necrosis factor-α levels decreased in the EPC-EXP, MSC-HUMAN, and MSC-MICE groups. IL-1β levels decreased in the EPC-EXP group, while IL-10 decreased in the MSC-MICE. IL-6 levels decreased both in the EPC-EXP and MSC-MICE groups. Vascular endothelial growth factor levels were reduced regardless of therapy. In conclusion, EPC-EXP and MSC-HUMAN yielded better lung function and reduced histologic damage in septic mice.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-015-0226-7) contains supplementary material, which is available to authorized users.

Highlights

  • Endothelial progenitor cells (EPCs) improve survival and reduce organ failure in cecal ligation and puncture-induced sepsis; expanded EPCs may represent an even better approach for vascular repair

  • On day 3, the survival percentage did not differ among untreated cecal ligation and puncture (CLP) animals, and the Mesenchymal stem cell (MSC)-MICE, MSCHUMAN, EPC-NEXP, and expanded endothelial progenitor cell (EPC-EXP) groups (89, 96, 82, 76, and 100 % respectively)

  • Expanded EPCs and human MSCs ameliorated lung mechanics Est,L was significantly increased in CLP mice at days 1 and 3 compared to sham-operated animals (P < 0.01)

Read more

Summary

Introduction

Endothelial progenitor cells (EPCs) improve survival and reduce organ failure in cecal ligation and puncture-induced sepsis; expanded EPCs may represent an even better approach for vascular repair. One day after cecal ligation and puncture sepsis induction, BALB/c mice were randomized to receive saline, EPC-EXP, EPC-NEXP, MSC-HUMAN or MSC-MICE (1 × 105) intravenously. On days 1 and 3, cecal ligation and puncture mice showed decreased survival rate, and increased elastance, diffuse alveolar damage, and levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α, vascular endothelial growth factor, and platelet-derived growth factor in lung tissue. EPC-EXP and MSC-HUMAN had reduced elastance, diffuse alveolar damage, and platelet-derived growth factor compared to no-cell treatment. Tumor necrosis factor-α levels decreased in the EPC-EXP, MSC-HUMAN, and MSC-MICE groups. EPC-EXP and MSC-HUMAN yielded better lung function and reduced histologic damage in septic mice

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call