Abstract
The authors investigated acrosomal changes occurring in boar sperm that interact with the expanded cumulus matrix surrounding ovulated pig oocytes. Samples of washed boar sperm obtained from six donors were incubated for 4 hr under capacitating conditions and exposed either to solubilized zonae pellucidae (ZP) or solubilized expanded pig cumuli (SEC) obtained from IVM oocytes. Alternatively, hyaluronic acid, laminin, or fibronectin, components of the extracellular matrix (ECM) were added to capacitated sperm. Acrosomal integrity was evaluated 1 hr later by using FITC-PSA staining. Solubilized cumuli induced acrosome reaction (AR) in a dose-dependent manner with a saturating effect exerted at 2.5 SEC/50 microl. Both 500 nM fibronectin and 500 nM laminin stimulated acrosomal exocytosis, the latter being more effective and inducing saturating levels of AR. By contrast, hyaluronic acid did not affect acrosomal status. Preincubation with anti-laminin antibodies completely prevented the inducing activity of SEC without affecting the activity of solubilized ZP. Consistent with these data, the integrin VLA-6, a receptor with high affinity for laminin, was detected by immunoblotting on the plasma membrane of capacitated boar spermatozoa. In addition, its immunoneutralization, obtained with the preincubation of capacitated sperm with the antibody raised against the alpha chain of VLA-6 integrin, prevented AR upon exposure to laminin or SEC (10.7+/-3.2 and 10.2+/-1.0% respectively), while the samples retained their responsiveness to ZP (29.6+/-1.2%). The results demonstrate that the interaction between laminin, entrapped in the expanded cumuli, and specific integrins present on the sperm membrane can initiate AR, thus taking part in the process of sperm-egg recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.