Abstract

Expandable cages have gone through several iterations since they first appeared on the market in the early 2000s. Their development was prompted by some common problems associated with static interbody cages, including migration, expulsion, dural or neural traction injury, and pseudarthrosis. To summarize current technological advances from earlier expandable lumbar interbody fusion devices to implants with vertical and medial-to-lateral expansion mechanisms. The authors review the currently available expandable cage designs, the incremental technological advances, and how these devices impact minimally invasive surgery interbody procedures and clinical outcomes. The strategic concepts intended to improve the minimally invasive application of expandable interbody fusion implants are reviewed from a surgeon's perspective in a clinical context to discuss how their use may improve patient outcomes. The geometrical configuration, effective stiffness of composite multi-material cage designs may impact the bone-implant contact area with the endplates. Hybridization strategies of expandable cage technology with modern minimally invasive and endoscopic spinal surgery techniques are presented by outlining their advantages and disadvantages. 1 CLINICAL RELEVANCE: Systematic review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.