Abstract
Lithium–sulfur and lithium–air batteries offer theoretical energy densities an order of magnitude higher than that of current lithium-ion batteries and are considered as promising candidates as the next-generation battery chemistries. For an efficient use of these new battery chemistries, careful selection of suitable electrode materials/structures is critical. Graphene, a unique two-dimensional nanomaterial, with its superior electronic conductivity, mechanical strength, and flexibility has been successfully applied in battery studies. Graphene, even with imperfect layers, will be of great interest to battery industrial applications if the manufacturing cost is reduced. Herein, we demonstrate the application of low-cost graphene sponge/sheets derived from expandable graphite in both lithium–sulfur and hybrid lithium–air batteries, respectively, as a cathode conductive matrix to accommodate the soluble polysulfides and as a catalyst for the oxygen reduction reaction. High utilization of active materials and good cycling stability are realized in lithium–sulfur and hybrid lithium–air batteries by employing this low-cost material, demonstrating its promise for use in next-generation battery chemistries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.