Abstract

A number of topological nodes including Dirac, quadratic and three-band touching points as well as a pair of degenerate Dirac line nodes are found to emerge in the triplet plaquette excitations of the frustrated spin-1/2 J1–J2 antiferromagnetic Heisenberg honeycomb model when the ground state of the system lies in a spin-disordered plaquette-valence-bond-solid phase. A six-spin plaquette operator theory of this honeycomb model has been developed for this purpose by using the eigenstates of an isolated Heisenberg hexagonal plaquette. Spin-1/2 operators are thus expressed in the Fock space spanned by the plaquette operators those are obtained in terms of exact analytic form of eigenstates for a single frustrated Heisenberg hexagon. Ultimately, an effective interacting boson model of this system is obtained on the basis of low energy singlets and triplets plaquette operators by employing a mean-field approximation. The values of ground state energy and spin gap of this system have been estimated and the validity of this formalism has been tested upon comparison with the known results. Emergence of topological point and line nodes on the basis of spin-disordered ground state noted in this investigation is very rare on any frustrated system as well as the presence of triplet flat band. Evolution of those topological nodes is studied throughout the full frustrated regime. Finally, emergence of topological phases has been reported upon adding a time-reversal-symmetry breaking term to the Hamiltonian. Coexistence of spin gap with either topological nodes or phases turns this honeycomb model an interesting one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.