Abstract

Swarmalators are oscillators that can swarm as well as sync via a dynamic balance between their spatial proximity and phase similarity. Swarmalator models employed so far in the literature comprise only one-dimensional phase variables to represent the intrinsic dynamics of the natural collectives. Nevertheless, the latter can indeed be represented more realistically by high-dimensional phase variables. For instance, the alignment of velocity vectors in a school of fish or a flock of birds can be more realistically set up in three-dimensional space, while the alignment of opinion formation in population dynamics could be multidimensional, in general. We present a generalized D-dimensional swarmalator model, which more accurately captures self-organizing behaviors of a plethora of real-world collectives by self-adaptation of high-dimensional spatial and phase variables. For a more sensible visualization and interpretation of the results, we restrict our simulations to three-dimensional spatial and phase variables. Our model provides a framework for modeling complicated processes such as flocking, schooling of fish, cell sorting during embryonic development, residential segregation, and opinion dynamics in social groups. We demonstrate its versatility by capturing the maneuvers of a school of fish, qualitatively and quantitatively, by a suitable extension of the original model to incorporate appropriate features besides a gallery of its intrinsic self-organizations for various interactions. We expect the proposed high-dimensional swarmalator model to be potentially useful in describing swarming systems and programmable and reconfigurable collectives in a wide range of disciplines, including the physics of active matter, developmental biology, sociology, and engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.