Abstract

We derived the low energy effective action for the collective modes in asymmetric fermionic systems with attractive interaction. We obtained the phase diagram in terms of the chemical potentials. It features a stable gapless superfluidity with one Fermi surface on the BEC side of the resonance. Also we predict a sharp increase in outer core of a vortex, i.e. vortex size, upon entering into the gapless phase. This may serve as a signature of a gapless phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.