Abstract
Leveraging cutting-edge numerical methodologies, we study the ground state of the two-dimensional spin-polarized Fermi gas in an optical lattice. We focus on systems at high density and small spin polarization, corresponding to the parameter regime believed to be most favorable to the formation of the elusive Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluid phase. Our systematic study of large lattice sizes, hosting nearly 500 atoms, provides strong evidence of the stability of the FFLO state in this regime, as well as a high-accuracy characterization of its properties. Our results for the density correlation function reveal the existence of density order in the system, suggesting the possibility of an intricate coexistence of long-range orders in the ground state. The ground-state properties are seen to differ significantly from the standard mean-field description, providing a compelling avenue for future theoretical and experimental explorations of the interplay between spin imbalance, strong interactions, and superfluidity in an exotic phase of matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.