Abstract
We studied firstly the ground state properties of C-isotopes using a deformed Hartree-Fock (HF)+ BCS model with Skyrme interactions. Shallow deformation minima are found in several neutron$-$rich C-isotopes. It is shown also that the deformation minima appear in both the oblate and the prolate sides in $^{17}$C and $^{19}$C having almost the same binding energies. Secondly, we carried out shell model calculations to study electromagnetic moments and electric dipole transitions of the C-isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C-isotopes, which will be useful to find out the deformations and the spin-parities of the ground states of these nuclei. We studied electric dipole states of C-isotopes focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Reasonable agreement is obtained with available experimental data for the photoreaction cross sections both in the low energy region below $\hbar \omega $=14 MeV and in the high energy giant resonance region (14 MeV $<\hbar \omega \leq $30 MeV). The calculated transition strength below dipole giant resonance ($\hbar \omega \leq $14 MeV) in heavier C-isotopes than $^{15}$C is found to exhaust about $12\sim16%$ of the classical Thomas-Reiche-Kuhn sum rule value and $50\sim80%$ of the cluster sum rule value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.