Abstract
We study zero temperature phase diagram of the three-dimensional Kugel-Khomskii model on a cubic lattice using the cluster mean field theory and different perturbative expansions in the orbital sector. The phase diagram is rich, goes beyond the single-site mean field theory due to spin-orbital entanglement. In addition to the antiferromagnetic (AF) and ferromagnetic (FM) phases, one finds also a plaquette valence-bond phase with singlets ordered either on horizontal or vertical bonds. More importantly, for increasing Hund's exchange we identify three phases with exotic magnetic order stabilized by orbital fluctuations in between the AF and FM order: (i) an AF phase with two mutually orthogonal antiferromagnets on two sublattices in each $ab$ plane and AF order along the c axis (ortho-$G$-type phase), (ii) a canted-$A$-type AF phase with a non-trivial canting angle between nearest neighbor FM layers along the c axis, and (iii) a striped-AF phase with anisotropic AF order in the $ab$ planes. We elucidate the mechanism responsible for each of the above phases by deriving effective spin models which involve second and third neighbor Heisenberg interactions as well as four-site spin interactions going beyond Heisenberg physics, and explain how the entangled nearest neighbor spin-orbital superexchange generates spin interactions between more distant spins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.