Abstract
Due to an extremely diverse phase space, La1-xSrxMnO3, as with other manganites, offers a wide range of tunability and applications including colossal magnetoresistance and use as spin-polarized electrodes. Here, we study an unprecedented, exotic surface reconstruction (6 × 6) in La1-xSrxMnO3 (x = 0.3) observed via low-energy electron diffraction (LEED). Scanning tunneling microscopy (STM) shows the surface is relatively flat, with unit-cell step heights, and X-ray photoelectron spectroscopy (XPS) reveals a strong degree of Sr segregation at the surface. By combining electron diffraction and first-principles computations, we propose that the long-range surface reconstruction consists of a Sr-segregated surface with La (6 × 6) ordering. This study expands our understanding of manganite systems and underscores their ability to form interesting surface reconstructions, driven largely by cation segregation that can potentially be controlled for tuning surface ordering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.