Abstract
A new two-component nonlinear wave system is studied by the generalized perturbation ($$n,N\hbox {-}n$$)-fold Darboux transformation, and various exotic localized vector waves are found. Firstly, the modulational instability is investigated to reveal the mechanism of appearance of rogue waves. Then based on the N-fold Darboux transformation, the generalized perturbation ($$n,N\hbox {-}n$$)-fold Darboux transformation is constructed to solve this two-component nonlinear wave system for the first time. Finally, two types of plane-wave seed solutions are selected to explore the localized vector wave solutions such as vector periodic wave solutions, vector breather solutions, vector rogue wave solutions and vector interaction solutions. It is found that there are both localized bright–dark vector waves and bright–bright vector waves in this system, which have not been reported before.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.