Abstract
We exhibit the first examples of closed 7-dimensional Riemannian manifolds with holonomy G_2 that are homeomorphic but not diffeomorphic. These are also the first examples of closed Ricci-flat manifolds that are homeomorphic but not diffeomorphic. The examples are generated by applying the twisted connected sum construction to Fano 3-folds of Picard rank 1 and 2. The smooth structures are distinguished by the generalised Eells–Kuiper invariant introduced by the authors in a previous paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.