Abstract

Spectrally inactive, electrically insulating, and chemically inert are adjectives broadly used to describe phyllosilicate minerals like mica and chlorite. Here, the above is disproved by demonstrating aqueous suspensions of liquid exfoliated nanosheets from five bulk mica types and chlorite schist. Nanosheet quality is confirmed via transmission electron and X-ray photoelectron spectroscopies, as well as electron diffraction. Through Raman spectroscopy, a previously unreported size- and layer-dependent spectral fingerprint is observed. When analyzing the high-yield suspensions (≈1mgmL-1 ) through UV-vis spectroscopy, all phyllosilicates present bandgap (Eg ) narrowing from ≈7eV in the bulk to ≈4eV for monolayers. Unusually, the bandgap is inversely proportional to the areal size (A) of the nanosheets, measured via atomic force microscopy. Due to an unrecorded quantum confinement effect, nanosheet electronic properties scale toward semiconducting behavior (bandgap ≈3eV) as nanosheet area increases. Furthermore, modeling X-ray diffraction spectra shows that the root cause of the initial bandgap narrowing is lattice relaxation. Finally, with their broad range of isomorphically substituted ions, phyllosilicate nanosheets show remarkable catalytic properties for hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call