Abstract

Half-lives of proton emission for proton emitters with Z = 51 to 83 are calculated, in the frame-work of unified fission model with the penetrability calculated using the WKB approximation. For all the ground and isomeric state of the proton, the deformation degree of freedom is included. Calculated half-lives are in good agreement with the experimental ones. Experimentally for a few isotopes, proton and alpha branches are reported. Hence we have calculated the half-lives of alpha decay for these elements. For parent nuclei 157Ta, 166Ir, 167Ir, 176Tl and 177Tl, the alpha decay mode is preferred over the proton emission. Further, the calculations are extended to find half-lives of superheavy element with odd proton number in the range Z = 105 to 119, for both proton, alpha and for a few cluster decays. Calculations on superheavy elements reveal that cluster radioactivity has half-lives comparable with proton emissions. It is found that proton emission is the primary competing decay mode with respect to alpha decay for superheavy elements. Among considered clusters, 12C, 20Ne and 24Mg are found to have lowest half-lives among other N = Z clusters and for a few clusters the half-lives are found to be comparable with that of proton emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call