Abstract

The exothermic surface chemistry associated with the alumina passivation shell surrounding aluminum (Al) particles and fluorine from fluoropolymer materials is investigated. In particular, polytetrafluoroethylene (PTFE) has been synthesized with varying chain lengths and combined with nanometric Al fuel particles. The Al-PTFE kinetics were analyzed using equilibrium diagnostics including differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) for calorific and phase change behavior coupled with additional flame speed measurements. The objective was to understand the effects of varying PTFE molecular structure on the kinetic and energy propagation behaviors of these composites. Results showed a pre-ignition reaction (PIR) with longer chained PTFE samples and not with the shorter chained PTFE samples. The PIR is attributed to fluorine dislodging hydroxyls from the alumina (Al2O3) passivation surface and forming Al-F structures. Composites exhibiting the PIR correspondingly result in significantly higher flame speeds. The PIR surface chemistry may contribute to promoting the melt dispersion mechanism (MDM) responsible for propagating energy in nano Al reactions. Composites with a PIR also have higher heats of combustion in both the PIR and main reaction exotherms. These results help elucidate the influence of molecular scale surface chemistry on macroscopic energy propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.