Abstract

PurposePlaster casts can cause burns. Synthetic casts do not. Composite plaster–synthetic casts have not been thoroughly evaluated. This study analyzed the temperature from plaster casts compared with composite casts in a variety of in vitro conditions that would simulate clinical practice.MethodsA Pyrex cylinder filled with constant body temperature circulating water simulated a human extremity. Circumferential casts, of either plaster or composite construction (plaster inner layer with outer synthetic layer), were applied to the model. Peak temperatures generated by the exothermic reactions were studied relative to the following variables: dip water temperature (24 °C versus 40 °C), cast thickness (16, 30, and 34 ply), and delayed (5-min) versus immediate application of the synthetic outer layers. Peak temperatures from the all-plaster casts were compared with the composite casts of the same thickness. Finally, the relative cast strength was determined.ResultsPotentially dangerous high temperatures were measured only when 40 °C dip water was used or when thick (30- or 34-ply) casts were made. Cast strength increased with increasing cast thickness. However, the presence of synthetics in the composite casts layers did not increase cast strength in every case.ConclusionWhen applying composite casts, the outer synthetic layers should be applied several minutes after the plaster to minimize temperature rise. Composite casts do not routinely generate peak temperatures higher than plaster casts of similar thickness. Because the skin of children and the elderly is more temperature-sensitive than average adult skin, extra care should be taken to limit the exothermic reaction when casting children and the elderly: clean, room temperature dip water, minimal required cast thickness, avoidance of insulating pillows/blankets while the cast is drying.

Highlights

  • Peak temperatures generated by the exothermic reactions were studied relative to the following variables: dip water temperature (24 °C versus 40 °C), cast thickness (16, 30, and 34 ply), and delayed (5-min) versus immediate application of the synthetic outer layers

  • Cast strength increased with increasing cast thickness

  • Because the skin of children and the elderly is more temperature-sensitive than average adult skin, extra care should be taken to limit the exothermic reaction when casting children and the elderly: clean, room temperature dip water, minimal required cast thickness, avoidance of insulating pillows/blankets while the cast is drying

Read more

Summary

Introduction

Composite plaster–synthetic casts have not been thoroughly evaluated. This study analyzed the temperature from plaster casts compared with composite casts in a variety of in vitro conditions that would simulate clinical practice. Methods A Pyrex cylinder filled with constant body temperature circulating water simulated a human extremity. Circumferential casts, of either plaster or composite construction (plaster inner layer with outer synthetic layer), were applied to the model. Peak temperatures generated by the exothermic reactions were studied relative to the following variables: dip water temperature (24 °C versus 40 °C), cast thickness (16, 30, and 34 ply), and delayed (5-min) versus immediate application of the synthetic outer layers. Peak temperatures from the all-plaster casts were compared with the composite casts of the same thickness.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call