Abstract

Fast growing softwood species such as pine are preferred for biomass-based heat as well as electricity production and stored in large quantities. A newly established outdoor pile of freshly cut pine-wood chips was monitored to analyze exothermic processes. Inside the pile, a mean temperature increase of up to 44 °C was measured after six days of piling which was paralleled by a decrease of O 2-concentration and an increase of CO 2-concentration. Thereafter four additional CO 2 maxima were observed, while O 2-concentration remained at ambient concentration. The fungal community structure remained almost unchanged after four weeks, while the bacterial community structure was characterized by continuous shifts over time. The rapid heating in the early stage of storage corresponded to high relative abundance of microbial strains belonging to the genera Pseudomonas, Luteibacter and Caulobacter, ascomycetous genera Sphaeropsis and Cadophora and basidiomycetous order Polyporales and genus Sistotremastrum. The late stage was composed by a broader diversity of microorganisms, and heating processes inside the wood pile were attributed mainly to physicochemical processes. Taken together, these observations suggest that the early bacterial and fungal communities are key players in exothermic processes and were replaced by a broader diversity of highly adapted microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call